Skip to content

Generated Knowledge Prompting (GKP) Agent

The GKP Agent is a sophisticated reasoning system that enhances its capabilities by generating relevant knowledge before answering queries. This approach, inspired by Liu et al. 2022, is particularly effective for tasks requiring commonsense reasoning and factual information.

Overview

The GKP Agent consists of three main components: 1. Knowledge Generator - Creates relevant factual information 2. Reasoner - Uses generated knowledge to form answers 3. Coordinator - Synthesizes multiple reasoning paths into a final answer

Architecture

graph TD
    A[Input Query] --> B[Knowledge Generator]
    B --> C[Generate Knowledge Items]
    C --> D[Reasoner]
    D --> E[Multiple Reasoning Paths]
    E --> F[Coordinator]
    F --> G[Final Answer]

    subgraph "Knowledge Generation"
        B
        C
    end

    subgraph "Reasoning"
        D
        E
    end

    subgraph "Coordination"
        F
        G
    end

Use Cases

graph LR
    A[GKP Agent] --> B[Commonsense Reasoning]
    A --> C[Factual Question Answering]
    A --> D[Complex Problem Solving]
    A --> E[Multi-step Reasoning]

    B --> B1[Everyday Logic]
    B --> B2[Social Situations]

    C --> C1[Historical Facts]
    C --> C2[Scientific Information]

    D --> D1[Technical Analysis]
    D --> D2[Decision Making]

    E --> E1[Chain of Thought]
    E --> E2[Multi-perspective Analysis]

API Reference

GKPAgent

The main agent class that orchestrates the knowledge generation and reasoning process.

Initialization Parameters

Parameter Type Default Description
agent_name str "gkp-agent" Name identifier for the agent
model_name str "openai/o1" LLM model to use for all components
num_knowledge_items int 6 Number of knowledge snippets to generate per query

Methods

Method Description Parameters Returns
process(query: str) Process a single query through the GKP pipeline query: str Dict[str, Any] containing full processing results
run(queries: List[str], detailed_output: bool = False) Process multiple queries queries: List[str], detailed_output: bool Union[List[str], List[Dict[str, Any]]]

KnowledgeGenerator

Component responsible for generating relevant knowledge for queries.

Initialization Parameters

Parameter Type Default Description
agent_name str "knowledge-generator" Name identifier for the knowledge generator agent
model_name str "openai/o1" Model to use for knowledge generation
num_knowledge_items int 2 Number of knowledge items to generate per query

Methods

Method Description Parameters Returns
generate_knowledge(query: str) Generate relevant knowledge for a query query: str List[str] of generated knowledge statements

Reasoner

Component that uses generated knowledge to reason about and answer queries.

Initialization Parameters

Parameter Type Default Description
agent_name str "knowledge-reasoner" Name identifier for the reasoner agent
model_name str "openai/o1" Model to use for reasoning

Methods

Method Description Parameters Returns
reason_and_answer(query: str, knowledge: str) Reason about a query using provided knowledge query: str, knowledge: str Dict[str, str] containing explanation, confidence, and answer

Example Usage

from swarms.agents.gkp_agent import GKPAgent

# Initialize the GKP Agent
agent = GKPAgent(
    agent_name="gkp-agent",
    model_name="gpt-4",  # Using OpenAI's model
    num_knowledge_items=6,  # Generate 6 knowledge items per query
)

# Example queries
queries = [
    "What are the implications of quantum entanglement on information theory?",
]

# Run the agent
results = agent.run(queries)

# Print results
for i, result in enumerate(results):
    print(f"\nQuery {i+1}: {queries[i]}")
    print(f"Answer: {result}")

Best Practices

  1. Knowledge Generation
  2. Set appropriate number of knowledge items based on query complexity
  3. Monitor knowledge quality and relevance
  4. Adjust model parameters for optimal performance

  5. Reasoning Process

  6. Ensure diverse reasoning paths for complex queries
  7. Validate confidence levels
  8. Consider multiple perspectives

  9. Coordination

  10. Review coordination logic for complex scenarios
  11. Validate final answers against source knowledge
  12. Monitor processing time and optimize if needed

Performance Considerations

  • Processing time increases with number of knowledge items
  • Complex queries may require more knowledge items
  • Consider caching frequently used knowledge
  • Monitor token usage for cost optimization

Error Handling

The agent includes robust error handling for: - Invalid queries - Failed knowledge generation - Reasoning errors - Coordination failures