Skip to content

In this section, we present a diverse collection of unique swarms, each with its own distinct characteristics and applications. These examples are designed to illustrate the versatility and potential of swarm intelligence in various domains. By exploring these examples, you can gain a deeper understanding of how swarms can be leveraged to solve complex problems and improve decision-making processes.

Documentation

Table of Contents

  1. Common Parameters
  2. Basic Swarm Patterns
  3. Mathematical Swarm Patterns
  4. Advanced Swarm Patterns
  5. Communication Patterns
  6. Best Practices
  7. Common Use Cases

Common Parameters

All swarm architectures accept these base parameters:

  • agents: AgentListType - List of Agent objects to participate in the swarm
  • tasks: List[str] - List of tasks to be processed by the agents
  • return_full_history: bool (optional) - If True, returns conversation history. Defaults to True

Return types are generally Union[dict, List[str]], where: - If return_full_history=True: Returns a dictionary containing the full conversation history - If return_full_history=False: Returns a list of agent responses

Basic Swarm Patterns

Circular Swarm

def circular_swarm(agents: AgentListType, tasks: List[str], return_full_history: bool = True)

Information Flow:

flowchart LR
    subgraph Circular Flow
    A1((Agent 1)) --> A2((Agent 2))
    A2 --> A3((Agent 3))
    A3 --> A4((Agent 4))
    A4 --> A1
    end
    Task1[Task 1] --> A1
    Task2[Task 2] --> A2
    Task3[Task 3] --> A3

Best Used When:

  • You need continuous processing of tasks

  • Tasks need to be processed by every agent in sequence

  • You want predictable, ordered task distribution

Key Features:

  • Tasks move in a circular pattern through all agents

  • Each agent processes each task once

  • Maintains strict ordering of task processing

Linear Swarm

def linear_swarm(agents: AgentListType, tasks: List[str], return_full_history: bool = True)

Information Flow:

flowchart LR
    Input[Task Input] --> A1
    subgraph Sequential Processing
    A1((Agent 1)) --> A2((Agent 2))
    A2 --> A3((Agent 3))
    A3 --> A4((Agent 4))
    A4 --> A5((Agent 5))
    end
    A5 --> Output[Final Result]

Best Used When:

  • Tasks need sequential, pipeline-style processing

  • Each agent performs a specific transformation step

  • Order of processing is critical

Star Swarm

def star_swarm(agents: AgentListType, tasks: List[str], return_full_history: bool = True)

Information Flow:

flowchart TD
    subgraph Star Pattern
    A1((Central Agent))
    A2((Agent 2))
    A3((Agent 3))
    A4((Agent 4))
    A5((Agent 5))
    A1 --> A2
    A1 --> A3
    A1 --> A4
    A1 --> A5
    end
    Task[Initial Task] --> A1
    A2 --> Result2[Result 2]
    A3 --> Result3[Result 3]
    A4 --> Result4[Result 4]
    A5 --> Result5[Result 5]

Best Used When:

  • You need centralized control

  • Tasks require coordination or oversight

  • You want to maintain a single point of task distribution

Mesh Swarm

def mesh_swarm(agents: AgentListType, tasks: List[str], return_full_history: bool = True)

Information Flow:

flowchart TD
    subgraph Mesh Network
    A1((Agent 1)) <--> A2((Agent 2))
    A2 <--> A3((Agent 3))
    A1 <--> A4((Agent 4))
    A2 <--> A5((Agent 5))
    A3 <--> A6((Agent 6))
    A4 <--> A5
    A5 <--> A6
    end
    Tasks[Task Pool] --> A1
    Tasks --> A2
    Tasks --> A3
    Tasks --> A4
    Tasks --> A5
    Tasks --> A6

Best Used When:

  • You need maximum flexibility

  • Task processing order isn't critical

  • You want fault tolerance

Mathematical Swarm Patterns

Fibonacci Swarm

def fibonacci_swarm(agents: AgentListType, tasks: List[str])

Information Flow:

flowchart TD
    subgraph Fibonacci Pattern
    L1[Level 1: 1 Agent] --> L2[Level 2: 1 Agent]
    L2 --> L3[Level 3: 2 Agents]
    L3 --> L4[Level 4: 3 Agents]
    L4 --> L5[Level 5: 5 Agents]
    end
    Task[Initial Task] --> L1
    L5 --> Results[Processed Results]

Best Used When:

  • You need natural scaling patterns

  • Tasks have increasing complexity

  • You want organic growth in processing capacity

Pyramid Swarm

def pyramid_swarm(agents: AgentListType, tasks: List[str], return_full_history: bool = True)

Information Flow:

flowchart TD
    subgraph Pyramid Structure
    A1((Leader Agent))
    A2((Manager 1))
    A3((Manager 2))
    A4((Worker 1))
    A5((Worker 2))
    A6((Worker 3))
    A7((Worker 4))
    A1 --> A2
    A1 --> A3
    A2 --> A4
    A2 --> A5
    A3 --> A6
    A3 --> A7
    end
    Task[Complex Task] --> A1
    A4 --> Result1[Output 1]
    A5 --> Result2[Output 2]
    A6 --> Result3[Output 3]
    A7 --> Result4[Output 4]

Best Used When:

  • You need hierarchical task processing

  • Tasks require multiple levels of oversight

  • You want organized task delegation

Grid Swarm

def grid_swarm(agents: AgentListType, tasks: List[str])

Information Flow:

flowchart TD
    subgraph Grid Layout
    A1((1)) <--> A2((2)) <--> A3((3))
    A4((4)) <--> A5((5)) <--> A6((6))
    A7((7)) <--> A8((8)) <--> A9((9))
    A1 <--> A4 <--> A7
    A2 <--> A5 <--> A8
    A3 <--> A6 <--> A9
    end
    Tasks[Task Queue] --> A1
    Tasks --> A5
    Tasks --> A9

Best Used When:

  • Tasks have spatial relationships

  • You need neighbor-based processing

  • You want structured parallel processing

Communication Patterns

One-to-One Communication

def one_to_one(sender: Agent, receiver: Agent, task: str, max_loops: int = 1) -> str

Information Flow:

flowchart LR
    Task[Task] --> S((Sender))
    S --> R((Receiver))
    R --> Result[Result]

Best Used When:

  • Direct agent communication is needed

  • Tasks require back-and-forth interaction

  • You need controlled message exchange

Broadcast Communication

async def broadcast(sender: Agent, agents: AgentListType, task: str) -> None

Information Flow:

flowchart TD
    T[Task] --> S((Sender))
    S --> A1((Agent 1))
    S --> A2((Agent 2))
    S --> A3((Agent 3))
    S --> A4((Agent 4))

Best Used When:

  • Information needs to reach all agents

  • Tasks require global coordination

  • You need system-wide updates

Best Practices

  1. Choose the Right Pattern:
  2. Consider your task's natural structure
  3. Think about scaling requirements
  4. Consider fault tolerance needs

  5. Performance Considerations:

  6. More complex patterns have higher overhead
  7. Consider communication costs
  8. Match pattern to available resources

  9. Error Handling:

  10. All patterns include basic error checking
  11. Consider adding additional error handling for production
  12. Monitor agent performance and task completion

  13. Scaling:

  14. Different patterns scale differently
  15. Consider future growth needs
  16. Test with expected maximum load

Common Use Cases

  1. Data Processing Pipelines
  2. Linear Swarm
  3. Circular Swarm

  4. Distributed Computing

  5. Mesh Swarm
  6. Grid Swarm

  7. Hierarchical Systems

  8. Pyramid Swarm
  9. Star Swarm

  10. Dynamic Workloads

  11. Exponential Swarm
  12. Fibonacci Swarm

  13. Conflict-Free Processing

  14. Prime Swarm
  15. Harmonic Swarm
import asyncio
from typing import List

from swarms.structs.agent import Agent
from swarms.structs.swarming_architectures import (
    broadcast,
    circular_swarm,
    exponential_swarm,
    fibonacci_swarm,
    grid_swarm,
    linear_swarm,
    mesh_swarm,
    one_to_three,
    prime_swarm,
    sigmoid_swarm,
    sinusoidal_swarm,
    staircase_swarm,
    star_swarm,
)


def create_finance_agents() -> List[Agent]:
    """Create specialized finance agents"""
    return [
        Agent(
            agent_name="MarketAnalyst",
            system_prompt="You are a market analysis expert. Analyze market trends and provide insights.",
            model_name="gpt-4o-mini"
        ),
        Agent(
            agent_name="RiskManager",
            system_prompt="You are a risk management specialist. Evaluate risks and provide mitigation strategies.",
            model_name="gpt-4o-mini"
        ),
        Agent(
            agent_name="PortfolioManager",
            system_prompt="You are a portfolio management expert. Optimize investment portfolios and asset allocation.",
            model_name="gpt-4o-mini"
        ),
        Agent(
            agent_name="ComplianceOfficer",
            system_prompt="You are a financial compliance expert. Ensure regulatory compliance and identify issues.",
            model_name="gpt-4o-mini"
        )
    ]

def create_healthcare_agents() -> List[Agent]:
    """Create specialized healthcare agents"""
    return [
        Agent(
            agent_name="Diagnostician",
            system_prompt="You are a medical diagnostician. Analyze symptoms and suggest potential diagnoses.",
            model_name="gpt-4o-mini"
        ),
        Agent(
            agent_name="Treatment_Planner",
            system_prompt="You are a treatment planning specialist. Develop comprehensive treatment plans.",
            model_name="gpt-4o-mini"
        ),
        Agent(
            agent_name="MedicalResearcher",
            system_prompt="You are a medical researcher. Analyze latest research and provide evidence-based recommendations.",
            model_name="gpt-4o-mini"
        ),
        Agent(
            agent_name="PatientCareCoordinator",
            system_prompt="You are a patient care coordinator. Manage patient care workflow and coordination.",
            model_name="gpt-4o-mini"
        )
    ]

def print_separator():
    print("\n" + "="*50 + "\n")

def run_finance_circular_swarm():
    """Investment analysis workflow using circular swarm"""
    print_separator()
    print("FINANCE - INVESTMENT ANALYSIS (Circular Swarm)")

    agents = create_finance_agents()
    tasks = [
        "Analyze Tesla stock performance for Q4 2024",
        "Assess market risks and potential hedging strategies",
        "Recommend portfolio adjustments based on analysis"
    ]

    print("\nTasks:")
    for i, task in enumerate(tasks, 1):
        print(f"{i}. {task}")

    result = circular_swarm(agents, tasks)
    print("\nResults:")
    for log in result['history']:
        print(f"\n{log['agent_name']}:")
        print(f"Task: {log['task']}")
        print(f"Response: {log['response']}")

def run_healthcare_grid_swarm():
    """Patient diagnosis and treatment planning using grid swarm"""
    print_separator()
    print("HEALTHCARE - PATIENT DIAGNOSIS (Grid Swarm)")

    agents = create_healthcare_agents()
    tasks = [
        "Review patient symptoms: fever, fatigue, joint pain",
        "Research latest treatment protocols",
        "Develop preliminary treatment plan",
        "Coordinate with specialists"
    ]

    print("\nTasks:")
    for i, task in enumerate(tasks, 1):
        print(f"{i}. {task}")

    result = grid_swarm(agents, tasks)
    print("\nGrid swarm processing completed")
    print(result)

def run_finance_linear_swarm():
    """Loan approval process using linear swarm"""
    print_separator()
    print("FINANCE - LOAN APPROVAL PROCESS (Linear Swarm)")

    agents = create_finance_agents()[:3]
    tasks = [
        "Review loan application and credit history",
        "Assess risk factors and compliance requirements",
        "Generate final loan recommendation"
    ]

    print("\nTasks:")
    for i, task in enumerate(tasks, 1):
        print(f"{i}. {task}")

    result = linear_swarm(agents, tasks)
    print("\nResults:")
    for log in result['history']:
        print(f"\n{log['agent_name']}:")
        print(f"Task: {log['task']}")
        print(f"Response: {log['response']}")

def run_healthcare_star_swarm():
    """Complex medical case management using star swarm"""
    print_separator()
    print("HEALTHCARE - COMPLEX CASE MANAGEMENT (Star Swarm)")

    agents = create_healthcare_agents()
    tasks = [
        "Complex case: Patient with multiple chronic conditions",
        "Develop integrated care plan"
    ]

    print("\nTasks:")
    for i, task in enumerate(tasks, 1):
        print(f"{i}. {task}")

    result = star_swarm(agents, tasks)
    print("\nResults:")
    for log in result['history']:
        print(f"\n{log['agent_name']}:")
        print(f"Task: {log['task']}")
        print(f"Response: {log['response']}")

def run_finance_mesh_swarm():
    """Market risk assessment using mesh swarm"""
    print_separator()
    print("FINANCE - MARKET RISK ASSESSMENT (Mesh Swarm)")

    agents = create_finance_agents()
    tasks = [
        "Analyze global market conditions",
        "Assess currency exchange risks",
        "Evaluate sector-specific risks",
        "Review portfolio exposure"
    ]

    print("\nTasks:")
    for i, task in enumerate(tasks, 1):
        print(f"{i}. {task}")

    result = mesh_swarm(agents, tasks)
    print("\nResults:")
    for log in result['history']:
        print(f"\n{log['agent_name']}:")
        print(f"Task: {log['task']}")
        print(f"Response: {log['response']}")

def run_mathematical_finance_swarms():
    """Complex financial analysis using mathematical swarms"""
    print_separator()
    print("FINANCE - MARKET PATTERN ANALYSIS")

    agents = create_finance_agents()
    tasks = [
        "Analyze historical market patterns",
        "Predict market trends using technical analysis",
        "Identify potential arbitrage opportunities"
    ]

    print("\nTasks:")
    for i, task in enumerate(tasks, 1):
        print(f"{i}. {task}")

    print("\nFibonacci Swarm Results:")
    result = fibonacci_swarm(agents, tasks.copy())
    print(result)

    print("\nPrime Swarm Results:")
    result = prime_swarm(agents, tasks.copy())
    print(result)

    print("\nExponential Swarm Results:")
    result = exponential_swarm(agents, tasks.copy())
    print(result)

def run_healthcare_pattern_swarms():
    """Patient monitoring using pattern swarms"""
    print_separator()
    print("HEALTHCARE - PATIENT MONITORING PATTERNS")

    agents = create_healthcare_agents()
    task = "Monitor and analyze patient vital signs: BP, heart rate, temperature, O2 saturation"

    print(f"\nTask: {task}")

    print("\nStaircase Pattern Analysis:")
    result = staircase_swarm(agents, task)
    print(result)

    print("\nSigmoid Pattern Analysis:")
    result = sigmoid_swarm(agents, task)
    print(result)

    print("\nSinusoidal Pattern Analysis:")
    result = sinusoidal_swarm(agents, task)
    print(result)

async def run_communication_examples():
    """Communication patterns for emergency scenarios"""
    print_separator()
    print("EMERGENCY COMMUNICATION PATTERNS")

    # Finance market alert
    finance_sender = create_finance_agents()[0]
    finance_receivers = create_finance_agents()[1:]
    market_alert = "URGENT: Major market volatility detected - immediate risk assessment required"

    print("\nFinance Market Alert:")
    print(f"Alert: {market_alert}")
    result = await broadcast(finance_sender, finance_receivers, market_alert)
    print("\nBroadcast Results:")
    for log in result['history']:
        print(f"\n{log['agent_name']}:")
        print(f"Response: {log['response']}")

    # Healthcare emergency
    health_sender = create_healthcare_agents()[0]
    health_receivers = create_healthcare_agents()[1:4]
    emergency_case = "EMERGENCY: Trauma patient with multiple injuries - immediate consultation required"

    print("\nHealthcare Emergency:")
    print(f"Case: {emergency_case}")
    result = await one_to_three(health_sender, health_receivers, emergency_case)
    print("\nConsultation Results:")
    for log in result['history']:
        print(f"\n{log['agent_name']}:")
        print(f"Response: {log['response']}")

async def run_all_examples():
    """Execute all swarm examples"""
    print("\n=== SWARM ARCHITECTURE EXAMPLES ===\n")

    # Finance examples
    run_finance_circular_swarm()
    run_finance_linear_swarm()
    run_finance_mesh_swarm()
    run_mathematical_finance_swarms()

    # Healthcare examples
    run_healthcare_grid_swarm()
    run_healthcare_star_swarm()
    run_healthcare_pattern_swarms()

    # Communication examples
    await run_communication_examples()

    print("\n=== ALL EXAMPLES COMPLETED ===")

if __name__ == "__main__":
    asyncio.run(run_all_examples())